Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lignin content in natural Populus variants affects sugar release.

Identifieur interne : 002E05 ( Main/Exploration ); précédent : 002E04; suivant : 002E06

Lignin content in natural Populus variants affects sugar release.

Auteurs : Michael H. Studer [États-Unis] ; Jaclyn D. Demartini ; Mark F. Davis ; Robert W. Sykes ; Brian Davison ; Martin Keller ; Gerald A. Tuskan ; Charles E. Wyman

Source :

RBID : pubmed:21444820

Descripteurs français

English descriptors

Abstract

The primary obstacle to producing renewable fuels from lignocellulosic biomass is a plant's recalcitrance to releasing sugars bound in the cell wall. From a sample set of wood cores representing 1,100 individual undomesticated Populus trichocarpa trees, 47 extreme phenotypes were selected across measured lignin content and ratio of syringyl and guaiacyl units (S/G ratio). This subset was tested for total sugar release through enzymatic hydrolysis alone as well as through combined hot-water pretreatment and enzymatic hydrolysis using a high-throughput screening method. The total amount of glucan and xylan released varied widely among samples, with total sugar yields of up to 92% of the theoretical maximum. A strong negative correlation between sugar release and lignin content was only found for pretreated samples with an S/G ratio < 2.0. For higher S/G ratios, sugar release was generally higher, and the negative influence of lignin was less pronounced. When examined separately, only glucose release was correlated with lignin content and S/G ratio in this manner, whereas xylose release depended on the S/G ratio alone. For enzymatic hydrolysis without pretreatment, sugar release increased significantly with decreasing lignin content below 20%, irrespective of the S/G ratio. Furthermore, certain samples featuring average lignin content and S/G ratios exhibited exceptional sugar release. These facts suggest that factors beyond lignin and S/G ratio influence recalcitrance to sugar release and point to a critical need for deeper understanding of cell-wall structure before plants can be rationally engineered for reduced recalcitrance and efficient biofuels production.

DOI: 10.1073/pnas.1009252108
PubMed: 21444820
PubMed Central: PMC3076829


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lignin content in natural Populus variants affects sugar release.</title>
<author>
<name sortKey="Studer, Michael H" sort="Studer, Michael H" uniqKey="Studer M" first="Michael H" last="Studer">Michael H. Studer</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of California, Bourns College of Engineering, Center for Environmental Research and Technology, Riverside, CA 92507, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of California, Bourns College of Engineering, Center for Environmental Research and Technology, Riverside, CA 92507</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
</author>
<author>
<name sortKey="Davis, Mark F" sort="Davis, Mark F" uniqKey="Davis M" first="Mark F" last="Davis">Mark F. Davis</name>
</author>
<author>
<name sortKey="Sykes, Robert W" sort="Sykes, Robert W" uniqKey="Sykes R" first="Robert W" last="Sykes">Robert W. Sykes</name>
</author>
<author>
<name sortKey="Davison, Brian" sort="Davison, Brian" uniqKey="Davison B" first="Brian" last="Davison">Brian Davison</name>
</author>
<author>
<name sortKey="Keller, Martin" sort="Keller, Martin" uniqKey="Keller M" first="Martin" last="Keller">Martin Keller</name>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21444820</idno>
<idno type="pmid">21444820</idno>
<idno type="doi">10.1073/pnas.1009252108</idno>
<idno type="pmc">PMC3076829</idno>
<idno type="wicri:Area/Main/Corpus">002E60</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E60</idno>
<idno type="wicri:Area/Main/Curation">002E60</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E60</idno>
<idno type="wicri:Area/Main/Exploration">002E60</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lignin content in natural Populus variants affects sugar release.</title>
<author>
<name sortKey="Studer, Michael H" sort="Studer, Michael H" uniqKey="Studer M" first="Michael H" last="Studer">Michael H. Studer</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of California, Bourns College of Engineering, Center for Environmental Research and Technology, Riverside, CA 92507, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of California, Bourns College of Engineering, Center for Environmental Research and Technology, Riverside, CA 92507</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
</author>
<author>
<name sortKey="Davis, Mark F" sort="Davis, Mark F" uniqKey="Davis M" first="Mark F" last="Davis">Mark F. Davis</name>
</author>
<author>
<name sortKey="Sykes, Robert W" sort="Sykes, Robert W" uniqKey="Sykes R" first="Robert W" last="Sykes">Robert W. Sykes</name>
</author>
<author>
<name sortKey="Davison, Brian" sort="Davison, Brian" uniqKey="Davison B" first="Brian" last="Davison">Brian Davison</name>
</author>
<author>
<name sortKey="Keller, Martin" sort="Keller, Martin" uniqKey="Keller M" first="Martin" last="Keller">Martin Keller</name>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Glucans (metabolism)</term>
<term>Lignin (analysis)</term>
<term>Populus (chemistry)</term>
<term>Populus (metabolism)</term>
<term>Xylans (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Glucanes (métabolisme)</term>
<term>Lignine (analyse)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Populus (métabolisme)</term>
<term>Xylanes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucans</term>
<term>Xylans</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucanes</term>
<term>Populus</term>
<term>Xylanes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Metabolism</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Métabolisme glucidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The primary obstacle to producing renewable fuels from lignocellulosic biomass is a plant's recalcitrance to releasing sugars bound in the cell wall. From a sample set of wood cores representing 1,100 individual undomesticated Populus trichocarpa trees, 47 extreme phenotypes were selected across measured lignin content and ratio of syringyl and guaiacyl units (S/G ratio). This subset was tested for total sugar release through enzymatic hydrolysis alone as well as through combined hot-water pretreatment and enzymatic hydrolysis using a high-throughput screening method. The total amount of glucan and xylan released varied widely among samples, with total sugar yields of up to 92% of the theoretical maximum. A strong negative correlation between sugar release and lignin content was only found for pretreated samples with an S/G ratio < 2.0. For higher S/G ratios, sugar release was generally higher, and the negative influence of lignin was less pronounced. When examined separately, only glucose release was correlated with lignin content and S/G ratio in this manner, whereas xylose release depended on the S/G ratio alone. For enzymatic hydrolysis without pretreatment, sugar release increased significantly with decreasing lignin content below 20%, irrespective of the S/G ratio. Furthermore, certain samples featuring average lignin content and S/G ratios exhibited exceptional sugar release. These facts suggest that factors beyond lignin and S/G ratio influence recalcitrance to sugar release and point to a critical need for deeper understanding of cell-wall structure before plants can be rationally engineered for reduced recalcitrance and efficient biofuels production.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21444820</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2011</Year>
<Month>Apr</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Lignin content in natural Populus variants affects sugar release.</ArticleTitle>
<Pagination>
<MedlinePgn>6300-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1009252108</ELocationID>
<Abstract>
<AbstractText>The primary obstacle to producing renewable fuels from lignocellulosic biomass is a plant's recalcitrance to releasing sugars bound in the cell wall. From a sample set of wood cores representing 1,100 individual undomesticated Populus trichocarpa trees, 47 extreme phenotypes were selected across measured lignin content and ratio of syringyl and guaiacyl units (S/G ratio). This subset was tested for total sugar release through enzymatic hydrolysis alone as well as through combined hot-water pretreatment and enzymatic hydrolysis using a high-throughput screening method. The total amount of glucan and xylan released varied widely among samples, with total sugar yields of up to 92% of the theoretical maximum. A strong negative correlation between sugar release and lignin content was only found for pretreated samples with an S/G ratio < 2.0. For higher S/G ratios, sugar release was generally higher, and the negative influence of lignin was less pronounced. When examined separately, only glucose release was correlated with lignin content and S/G ratio in this manner, whereas xylose release depended on the S/G ratio alone. For enzymatic hydrolysis without pretreatment, sugar release increased significantly with decreasing lignin content below 20%, irrespective of the S/G ratio. Furthermore, certain samples featuring average lignin content and S/G ratios exhibited exceptional sugar release. These facts suggest that factors beyond lignin and S/G ratio influence recalcitrance to sugar release and point to a critical need for deeper understanding of cell-wall structure before plants can be rationally engineered for reduced recalcitrance and efficient biofuels production.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Studer</LastName>
<ForeName>Michael H</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>University of California, Bourns College of Engineering, Center for Environmental Research and Technology, Riverside, CA 92507, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>DeMartini</LastName>
<ForeName>Jaclyn D</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>Mark F</ForeName>
<Initials>MF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sykes</LastName>
<ForeName>Robert W</ForeName>
<Initials>RW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Davison</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keller</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tuskan</LastName>
<ForeName>Gerald A</ForeName>
<Initials>GA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wyman</LastName>
<ForeName>Charles E</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005936">Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014990">Xylans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005936" MajorTopicYN="N">Glucans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014990" MajorTopicYN="N">Xylans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21444820</ArticleId>
<ArticleId IdType="pii">1009252108</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1009252108</ArticleId>
<ArticleId IdType="pmc">PMC3076829</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Agric Food Chem. 2003 Oct 8;51(21):6178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14518941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2010 Feb 1;105(2):231-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19731251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2006 Spring;129-132:427-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(11):e14021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21151641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2000 Spring;84-86:5-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):746-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17621299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2010 Dec 02;3:27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21126354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2010 Jan 27;58(2):895-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2008 Dec 1;101(5):913-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18781690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 27;311(5760):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2008 Apr;19(2):166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18403196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2006 Oct;93(10):1433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):621-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19386808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2004 Sep-Oct;327(9-10):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15587080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1999 Oct 1;15(5):777-793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2004 Jan 8;107(1):65-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14687972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 May;54(4):569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18476864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2009 Mar-Apr;25(2):333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19294662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2010 Sep;162(1):62-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19701727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Sep;99(13):5270-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18158236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):555-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2007 Nov;98(16):3061-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17141499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):258-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18374624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;581:169-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19768623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Mar 15;251(4999):1318-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17816186</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Davis, Mark F" sort="Davis, Mark F" uniqKey="Davis M" first="Mark F" last="Davis">Mark F. Davis</name>
<name sortKey="Davison, Brian" sort="Davison, Brian" uniqKey="Davison B" first="Brian" last="Davison">Brian Davison</name>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
<name sortKey="Keller, Martin" sort="Keller, Martin" uniqKey="Keller M" first="Martin" last="Keller">Martin Keller</name>
<name sortKey="Sykes, Robert W" sort="Sykes, Robert W" uniqKey="Sykes R" first="Robert W" last="Sykes">Robert W. Sykes</name>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Studer, Michael H" sort="Studer, Michael H" uniqKey="Studer M" first="Michael H" last="Studer">Michael H. Studer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21444820
   |texte=   Lignin content in natural Populus variants affects sugar release.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21444820" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020